Two Iterative Algorithms for Solving Systems of Simultaneous Linear Algebraic Equations with Real Matrices of Coefficients
نویسندگان
چکیده
The paper describes two iterative algorithms for solving general systems of M simultaneous linear algebraic equations (SLAE) with real matrices of coefficients. The system can be determined, underdetermined, and overdetermined. Linearly dependent equations are also allowed. Both algorithms use the method of Lagrange multipliers to transform the original SLAE into a positively determined function F of real original variables and Lagrange multipliers λm. Function F is differentiated with respect to variables xi and the obtained relationships are used to express F in terms of Lagrange multipliers λm. The obtained function is minimized with respect to variables λm with the help of one of two the following minimization techniques: (1) relaxation method or (2) conjugate gradient method by Fletcher and Reeves. Numerical examples are given. INTRODUCTION Most of well-known methods for solving systems of simultaneous (consistent) linear algebraic equations that can be found in standard software packages either fail to solve systems with degenerate matrices of coefficients (for the systems containing linearly dependent equations) and the systems in which the number of equations does not coincide with the number of unknowns (in the case of underdetermined or overdetermined systems) or require tedious preliminary manipulations. Therefore, the development of a universal algorithm that is suitable for solving both underdetermined and overdetermined systems and does not require a preliminary analysis of the system type seems to be useful. 1. FORMULATION OF THE PROBLEM Let us we have a system of simultaneous linear equations
منابع مشابه
Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملNew Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملImprovements of two preconditioned AOR iterative methods for Z-matrices
In this paper, we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix. These methods can be considered as improvements of two previously presented ones in the literature. Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0501041 شماره
صفحات -
تاریخ انتشار 2005